GCNPReport 349 1 1 2014 - Nov-11

Swift Observations of GRB 111103B

D. Grupe (PSU), S.R. Oates (MSSL-UCL), W.H Baumgartner (NASA/GSFC), S. D. Barthelmy (NASA/GSFC), J.A. Kennea (PSU), D.N. Burrows (PSU), M.H. Siegel (PSU), and N. Gehrels (NASA/GSFC) for the Swift Team

1 Introduction

At 10:59:03 UT on 2011-11-03, the Swift Burst Alert Telescope (BAT) triggered and located GRB 111103B (trigger=506903). Swift slewed immediately to the burst and found an X-ray counterpart in the XRT (Grupe et al., GCN Circ. 12519)

The best *Swift* position of this burst is the XRT position given in Goad et al. (*GCN Circ.* 12525) with RA-2000 = 17h 42m 46.37s, and Dec-2000 = $+01^{\circ}$ 36' 36.3" with an uncertainty of 1.5".

The burst was also detected by Konus-Wind. Golenetskii et al. (*GCN Circ.* 12532) reported on an spectral slope of $\alpha = -0.97^{+0.19}_{-0.18}$ and an $E_{\rm peak} = 372^{+109}_{-69}$ keV.

There were a few ground-based optical/NIR follow-up observation reported on this burst. Most notably was the detection by the WIYN 3.5m telecope at Kitt Peak (Kotulla et al. GCN Circ. 12531) who reported of a source in the Swift XRT error circle with $K=18.6\pm0.4$.

Swift had to stop observing the afterglow of GRB 111103B becasue it became sun-constrained on November 06th.

2 BAT Observation and Analysis

At 10:59:03 UT on 2011-11-03, the Swift Burst Alert Telescope (BAT) triggered and located GRB 111103B (trigger=506903, Grupe et al., GCN Circ. 12519). Using the data set from T-239 to T+418 s, the BAT ground-calculated position is RA, Dec = 265.691, +1.605 deg which is

RA(J2000) = 17h 42m 45.8s

 $Dec(J2000) = +01^{\circ} 36' 19.4''$

with an uncertainty of 1.0 arcmin, (radius, sys+stat, 90% containment). The partial coding was 90% (Barthelmy et al. GCN Circ. 12524).

The mask-weighted light curve (Figure 1) shows at least 4 overlapping peaks in the first group: starting at T-25 s, with the brightest peak at T+8 s, and ending at T+90 s. The second group of peaks starts at T+100 s and ends at T+250 s. This last group is consistent with a strong flare seeing in the XRT light curve (Figure 2). T_{90} (15-350 keV) is 167 ± 35 s (estimated error including systematics).

The time-averaged spectrum from T-6.55 to T+250 s is best fit by a single power law model. The power law index of the time-averaged spectrum is 1.41 ± 0.05 ($\chi^2=50.7$ for 57 d.o.f.). For this model the total fluence in the 15-150 keV band is $8.0 \pm 0.2 \times 10^{-6}$ ergs cm⁻². The 1s peak photon flux measured from T+5.48 s in the 15-150 keV band is 7.2 ± 0.3 photons s⁻¹ cm⁻². All the quoted errors are at the 90% confidence level.

The results of the batgrbproduct analysis are available at http://gcn.gsfc.nasa.gov/notices_s/506903/BA/

GCNPReport 349 1 1 2 1 4 - Nov-11

3 XRT Observations and Analysis

The XRT began observing the field of GRB 111103B at 11:00:03 UT, 59.2 seconds after the BAT trigger. Using 1541 s of XRT Photon Counting mode data and 4 UVOT images for GRB 111103B, Goad et al. (*GCN Circ.* 12525) found an astrometrically corrected X-ray position (using the XRT-UVOT alignment and matching UVOT field sources to the USNO-B1 catalogue): RA, Dec = 265.69322, +01.61007 which is equivalent to:

RA (J2000): 17h 42m 46.37s Dec (J2000): $+01^{\circ}$ 36' 36.3"

with an uncertainty of 1.5'' (radius, 90% confidence). The latest position can be viewed at http://www.swift.ac.uk/xrt_positions. Position enhancement is described by Goad et al. (2007, A&A, 476, 1401) and Evans et al. (2009, MNRAS, 397, 1177).

A spectrum formed from the WT mode data can be fitted with an absorbed power-law with a photon spectral index of $\Gamma = 1.97^{+0.05}_{-0.04}$. The best-fitting absorption column is $2.90^{+0.16}_{-0.15} \times 10^{21}$ cm⁻², in excess of the Galactic value of 9.1×10^{20} cm⁻² (Kalberla et al. 2005). The PC mode spectrum has a photon index of $\Gamma = 1.85^{+0.13}_{-0.12}$ and a best-fitting absorption column density of $N_{\rm H} = 2.7 \pm 0.5$ cm⁻². The counts to observed (unabsorbed) 0.3-10 keV flux conversion factor deduced from this spectrum is 4.4×10^{-11} (6.3×10⁻¹¹) erg cm⁻² count⁻¹. Using the excess $N_{\rm H}$ - redshift relation by Grupe et al. (2007, AJ, 133, 2216) we can estimate that the redshift of this burst is most-likely less than 4.

The 0.3-10~keV light curve given below (Fig.2) displays a canonical light curve (as described by Nousek et al. 2006, ApJ, 642, 389) with a very strong flare at T+110s and an initial decay slope $\alpha=3.1^{+0.4}_{-0.3}$ with a break at T+94±2 s followed by a flattening of the decay slope to $\alpha=0.59^{+0.05}_{-0.07}$. The light curve breaks again at T+8600 $^{+1690}_{-1370}$ s and continues with a normal decay slope of $\alpha=1.30\pm0.04$.

The results of the XRT-team automatic analysis are available at http://www.swift.ac.uk/xrt_products/00506903.

4 UVOT analysis

The Swift/UVOT began settled observations of the field of GRB 111103B 68 s after the BAT trigger (Grupe et al., GCN Circ. 12519) with the finding chart in white filter. Oates & Grupe (GCN Circ. 12528) reported that no optical counter part was found at the XRT position (Goad et al, GCN Circ. 12525).

The 3σ upper limits for the summed images are listed in Table 1.

Filter	$T_{ m Start}$	T_{stop}	Exposure	Mag
white_FC	68	218	147	>20.6
white	68	5055	344	> 21.1
v	5266	5466	197	> 19.1
b	4650	6161	270	>20.0
u	281	6081	297	> 20.2
w1	5677	5876	197	> 19.9
m2	5471	5670	197	> 19.8
w2	5061	5261	197	>20.3

Table 1: 3σ upper limits from UVOT observations of GRB 111103B. The quoted values have not been corrected for the expected Galactic extinction along the line of sight of $E_{\rm B-V}=0.29$ mag. All photometry is on the UVOT photometric system described in Poole et al. (2008, MNRAS, 383, 627) and Breeveld et al. (2011, AIP Conf. Proc., Vol. 1358, 373)

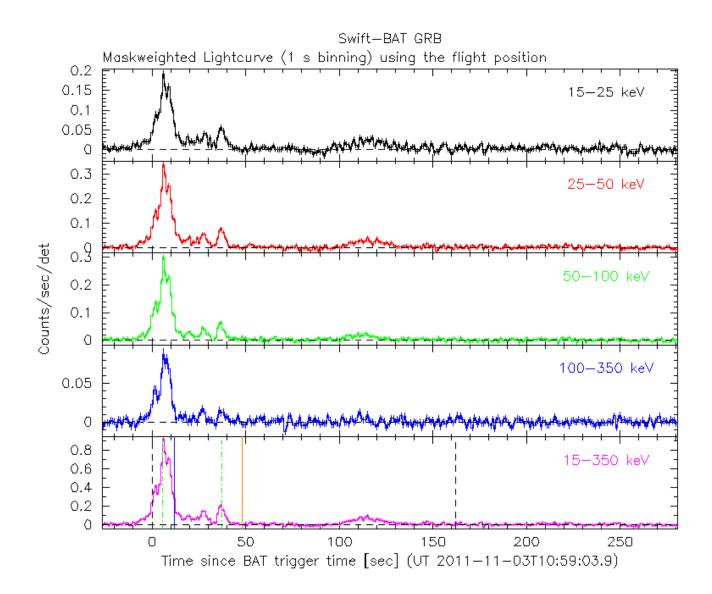


Figure 1: BAT Light curve of GRB 111103B.

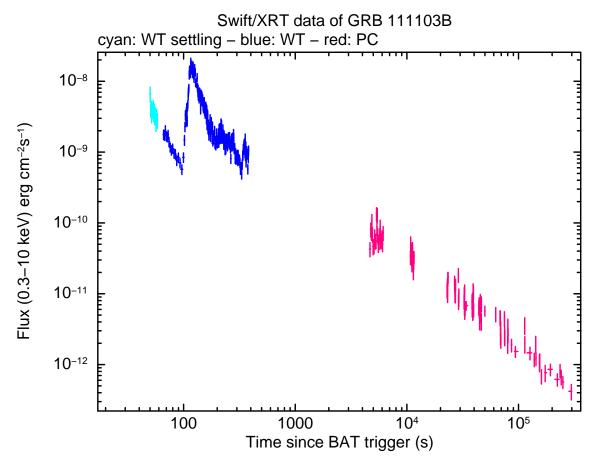


Figure 2: XRT flux light curve of GRB 111103B in the 0.3-10 keV band. The approximate conversion is 1 count s⁻¹ = $\sim 4.4 \times 10^{-11} {\rm ergs~s^{-1}~cm^{-2}}$.